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Electromagnetic force in dispersive and transparent media
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A hydrodynamic-type, macroscopic theory was derived recently to account for dissipation and dispersion of
electromagnetic field, in nonstationary condensed systems of nonlinear constitutive relations@Yimin Jiang and
Mario Liu, Phys. Rev. Lett.77, 1043 ~1996!#. As it is published, some algebra and the more subtle of the
reasonings had to be left out. They are presented in this paper and include~i! how the results algebraically
reduce to the classic ones in the appropriate limits, and~ii ! more thoughts on the range of validity of the theory,
especially concerning dissipation.@S1063-651X~98!06611-2#

PACS number~s!: 41.20.Bt, 47.10.1g, 52.35.Mw, 52.25.2b
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I. INTRODUCTION

Two theories were recently set up to account for the
havior of condensed media subject to strong external fie
They describe dissipation and dispersion, and yield an
plicit expression for the electromagnetic force. The first i
hydrodynamic theory valid for low frequencies@2#, and the
second a generalization for higher frequencies@1#.

Let us first understand how the hydrodynamic theory a
the usual theory of linear response complement each o
The macroscopic Maxwell equations, given in terms of
four fieldsE, D, H, andB, need constitutive relations link
ing them to be closed. The form of these relations depe
on two physical parameters, the frequency and the fi
strength. Weak fields are necessary for the linear respo
theory (eE5D,mH5B) to hold; while the hydrodynamic
constitutive relations@2# presuppose small frequencies~but
not the weakness of fields!.

There is a second closure problem one level up that m
are not as aware of: A theory of electromagnetism in mate
is only complete if it also accounts for the feedback, t
electromagnetic force on the material. In the microsco
electrodynamics, this is the Lorentz force—the Maxw
equations yield the field produced by the sources, while
Lorentz force~in conjunction with the Newton equation! de-
scribes how, conversely, the field changes~the position and
motion of! the sources.

In the macroscopic theory, we also need an expression
the force, now in terms of the macroscopic fields,E, D, H,
and B. This information is contained in two related quan
ties: ~i! the additional energy due to the presence of the e
tromagnetic field, and~ii ! the flux of the conserved, tota
momentum density. The hydrodynamic theory provides
ambiguous expressions for both, and is therefore closed
complete even at this second level. Circumstances are
fortunate for the linear response theory, as these two exp
sions are known here only with a string of additional restr
tions.

Assuming transparency~i.e., lack of dissipation!, quasi-
monochromatic external field and stationarity~i.e., identi-
cally vanishing velocity field of the condensed system!—all
PRE 581063-651X/98/58~5!/6685~10!/$15.00
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in addition to the linearity of the constitutive relations—
Brillouin obtained the field energy in 1921, while Pitaevsk
forty years later, arrived at the attendant expression for
total stress tensor, see Landau and Lifshitz@3#, and the re-
view article by Kentwell and Jones@4#.

If we draw a diagram of field strength versus frequen
v, with the field strength pointing to the right, andv up-
ward, a vertical stripe along thev axis represents the rang
of validity for the linear response theory, while the hydrod
namic theory reigns within a horizontal stripe along the fie
axis. The expressions of Brillouin and Pitaevskiı˘ are valid in
isolated patches in the vertical stripe, wherever dissipatio
negligible @5#.

The parameter space beyond the above two perpendic
stripes needs a theory that is a generalization of both
linear response theory and the hydrodynamic theory, a
must simultaneously account for dissipation, dispersion, n
linear constitutive relations, and finite velocities. Althoug
one might expect principal difficulties in setting up such
theory, since neither of the two parameters, field and
quency, remains small, we are~up to and maybe slightly
beyond the optical frequencies'1015 Hz) still in the realm
of macroscopic physics, as the electromagnetic wavelen
remains large compared to the atomic graininess. And w
seeking the expression for the electromagnetic force o
volume element of condensed matter, exerted by~say! a
strong laser beam, if we confine our curiosity to the temp
rally averaged force—with a resolution larger than the tim
needed to establish local equilibrium—a simple, univer
and hydrodynamic-type theory is still possible. Such a the
was derived recently@1# by generalizing the hydrodynami
theory of electromagnetism.

The generalization was accomplished by taking the po
ization P and its temporal derivativeṖ as independent vari
ables, and explicitly deriving the equation of motion forP.
This step eliminates the necessity for frequency depend
constitutive relations, which lies at the root of the difficultie
one encounters when attempting to extend the linear
sponse theory into the nonlinear region.~In this first step, the
magnetization has not been included as an independent
6685 © 1998 The American Physical Society
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able. So the theory is only valid for statically nonmagne
media.!

It is important to realize that the questions posed and
swered here are very close to experiments, and henc
great relevance. This is a theory the variables of which
directly measurable: the macroscopic electromagnetic fie
the density, the temperature, and the averaged particle ve
ity. Consisting of equations of motion, the theory predicts
values of these variables for the next instance if their pres
values are given. A typical result is the density distributi
of particles, and the associated temperature field, in the p
ence of an oscillating electromagnetic field.

In this paper, we show explicitly that the nonlinear e
pressions for the energy and the stress tensor indeed re
to the known ones, of Brillouin and Pitaevskiı˘, in the speci-
fied limit. Because of the chosen approach of generaliza
discussed above, this outcome is by no mean obvious
assured. Besides, the associated algebra is fairly invo
and needs to be presented. Once accomplished, this pro
two bonuses: It strengthens our trust in the new theory
provides a transparent interpretation for the old and cla
results which, having relied heavily on algebra, are som
what lacking in appropriate physical pictures.

This generalized, hydrodynamic-type macroscopic the
for higher frequencies, or for brevity,hydrodynamic theory
of dispersion, will be presented in Sec. II, to render th
present manuscript self-contained.~Nevertheless, since w
shall mostly only list the relevant formulas and abstain fro
repeating all the reasoning and arguments that lead to
new theory, the reader is advised to also read Ref.@1#.! In
addition, the question about the range of validity of the n
theory is discussed here in greater detail than in@1#, at the
beginning of the next section.

Section III incorporates the specified approximations a
deduces four results. They are compared to the energy
sity by Brillouin, and to three formulas by Pitaevskiı˘: the
total stress tensor, the ‘‘nonmagnetic’’ magnetization, a
the time dependent permittivity. Section IV ends with a br
summary.

II. THE HYDRODYNAMIC THEORY OF DISPERSION

In this section, we shall first discuss in some detail
range of validity of the theory, then present its complete
of equations, and specify the theory by an expansion of
thermodynamic energy to third order in the field variable

A. Range of validity

The proper hydrodynamic theory of electromagnetism@2#
accounts for the macroscopic dynamics of continuous me
in the low frequency limit, of a system that is charged
exposed to external fields. Local thermodynamic equilibri
holds, and the set of hydrodynamic variables is identica
that of the thermodynamic variables. The equations of m
tion are conservation laws and the Maxwell equations,
cluding irreversible terms accounting for dissipation.

At higher frequencies, microscopic variables deviate m
and more from equilibrium, becoming independent, and
nally ballistic. Denoting the timet loc needed to establish
local equilibrium, this starts to happen whenvt loc is no
longer small. To account for this circumstance, we usua
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have to abandon the hydrodynamic theory and embrace
Boltzmann theory which, despite its undeniable usefulne
is both a far more complex and a less general theory
considers the vast number of microscopic degrees of free
explicitly, and it is confined to dilute systems. The questi
therefore is whether an appropriately generalized hydro
namic theory can be made to account for some of the m
interesting aspects at higher frequencies, and save us
the complexities of the Boltzmann theory.

Let us concentrate on one such microscopic, nonther
dynamic variable, the polarizationP. Actually, as far as its
spatial extent is concerned, it is a macroscopic rather tha
microscopic variable, but it is certainly a dependent one
the hydrodynamic limit, as long asvtP!1 holds, wheretP
is the longest ofP’s characteristic times.

In a dielectric medium,P has many characteristic times
given by its resonance frequencies and their widths. If th
are well separated, then the equation of motion forP, close
to one resonance and in the simplest case considered b
is

P̈/vp
22tṖ1P5xD, ~1!

cf. Eq. ~14! of the next section, wherevp and t are the
resonance frequency and a damping time of the given re
nance. This resonance may be overdamped (t@1/vp) or
sharply resonating (t!1/vp), and the characteristic time
tP , after which the polarization is no longer independent
respectivelyt and 2/(vp

2t). The time scale forP’s motion in
the resonating case is 1/vp . ~Note that going to a differen
resonance,tP will change, it therefore depends on the fr
quency of the external field.!

If the polarization P is a specially slow variable,tP
@t loc ~wheret loc is around 10210 s at usual temperature
and densities! we may increase the range of validity of th
hydrodynamic electromagnetic theory, fromv!1/tP to v
!1/t loc , by taking the energy as a local function also ofP,
Ṗ, and derive the equation of motion forP. There is quite a
number of systems with a largetP : All electrorheological
fluids have especially largetP , of the order of 1024 s, but
other complex fluids with large molecules and a perman
molecular dipole moment~such as nematic liquid crystals!
also have a slow polarization.~Even the comparatively sma
water molecule with its permanent dipole moment has atP
around 1029 s.) The hydrodynamic theory of dispersio
presented below is unqualifiedly valid for these syste
~though it should usually be enough to neglectP̈ in the equa-
tion of motion, or equivalently, excludeṖ as an additional
variable.! We shall refer to this scenario as hydrodynam
dispersion.

Interestingly, essentially the same set of equations a
accounts for a system in the ballistic regime, for quick
oscillating electric fields and polarizations, 1/vp!t loc—if
we confine the theory to averaged quantities, such as wh
the averaged force that a high frequency external field ex
on a volume element.~Note that this low resolution is quite
sufficient for resolving the hydrodynamic responses to a h
frequency field.! This scenario we shall refer to as ballist
dispersion. Clearly, we need to understand why the equat
for hydrodynamic dispersion also work for ballistic dispe
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sion, and what the restrictions are.
First, a coarse grained, hydrodynamic-type description

at all possible because the field variablesP, D, andB vary
~due to the largeness of the light velocity! on macroscopic,
hydrodynamic length scales. Second, most of the gen
principles used as input to consider hydrodynamic dispers
are also valid here. Especially, the total energy and mom
tum remain conserved. The one exception is local equi
rium, and equivalently, a defined value for the entropy d
sity. The lack of these introduces some caveats with res
to temporal resolution and to dissipation. More specifica
they are the following:

~i! In the ballistic regime, the variables of the theory d
vide into two types, fast and slow. The field variables a
fast, the rest are slow, including the densities of massr,
entropy s, total energyu, and total momentumgtot. The
equations of motion of the field variables are highly accura
resolving temporal increments much less than 1/vp ; the ac-
tual hydrodynamic equations are coarse, with a resolu
low compared tot loc . And because every differential equ
tion, consistently, has a unique resolution, all field terms
pearing in the slow, hydrodynamic equations need to be
propriately averaged.

~ii ! The hydrodynamic theory of dispersion presented
the next section is clearly valid for ballistic dispersion in t
transparent region. But because of the arguments listed
low, it should remain valid even if field dissipation is stron

Taking electromagnetic dissipation into account, the to
conserved energy divides into three parts,

U5Umat1Uem1Umic. ~2!

The first is the thermodynamic energy in the absence o
external field; the second is the additional energy in the p
ence of a field; and the third is the rest, the energy of
microscopic variables not given in the first two explicitl
Umic(x1

2 ,x2
2 . . . ). Thevariablesxi are defined such that the

vanish in local equilibrium, so they are irrelevant for th
consideration of hydrodynamic dispersion. In the ballistic
gime, Umic is finite and serves as a transit hall: Extern
energy is being fed continually intoUem, the electromagnetic
dissipation excites some microscopic degrees of freedomxi ,
and convertsUem into Umic—which after the comparably
long time of t loc becomes heat,Uem→Umic→*Tds. The
rate at whichUem is lost is approximatelyU̇em'2Uem/tP ,
the average time this energy stays in the transit hall ist loc ,
so Umic'(t loc /tP)Uem. The right side translates int
(t loc /t)Uem for the overdamped oscillation, and int
1
2 (vp

2t loct)Uem for the resonating one. In the first case, w
always haveUmic@Uem, and in the second we mostly do
rendering the transit hall usually large.

Including nonhydrodynamic variables such asP leads to
contributions;P and]U/]P in the energy and momentum
flux, see the next section. IfUmic is nonzero, we would ex-
pect similar terms;xi and]U/]xi . These we may neglec
in the transparent region of vanishing dissipation, defined
the frequency regime where the stringent conditionvp

2t loct
!1 holds, or equivalentlyUmic!Uem, so Umic and its con-
tributions may be neglected. Outside these regimes, altho
circumstances are not as certain and more in need of a c
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fying microscopic approach such as the Boltzmann theo
there are reasons why we may quite generally neglectUmic.

While terms such asP2 and Ṗ2, of macroscopic extent
coherently add up over many periods to yield slowly varyi
contributions,;^P2& and ^Ṗ2&, in the momentum and en
ergy flux, and thereby directly alter the slow, hydrodynam
variables, the quantitiesxi are random and of microscopi
spatial scales. So, instead of adding up, they further dissi
and degrade, to eventually turn into heat. On the coa
hydrodynamic time scale, we may therefore lump^Umic& into
heat *Tds, and ^(]/]t)Umic& into the heat productionR.
Then, clearly,Umic may be neglected as an independent
tity.

On a more operational level, the very criterion by whi
we have singled outP and Ṗ from the lot of microscopic
degrees of freedom is their qualitatively different behavi
Given a certain energy content in the fieldD andB, there is
a back and forth of energy flow betweenD, B, P, and Ṗ
within each period; while the field energy that leaks into t
other microscopic degrees of freedom is usually lost. In fa
for an overdamped resonance, it is~as mentioned! appropri-
ate to excludeṖ as an explicit variable, and consider it as o
of the many ordinary microscopic degrees of freedom, as
energy leaked intoṖ is lost to the field. On the other hand,
a system involves more variables in the tidallike transfer
field energy, the present theory needs to be generalize
also include them—one example comes readily to mind:
independent magnetization.

Finally, a technical remark. Being a function also of t
slow variables,Uem is, even without any dissipation~or elec-
tric charge!, not conserved by itself, and the permeability«
will in general contain an imaginary part to account for th
fact.

B. Equations of motion

The complete hydrodynamic theory of dispersion cons
of a closed set of partial differential equations that gove
the dynamics of the medium and the electromagnetic fie
The structure of the equations is determined by general p
ciples: the Maxwell equations, the Lorentz-Galilean transf
mation, the thermodynamic theory, and the relevant con
vation laws.

Combining the two macroscopic energy densities,

UMac[Umat1Uem ~3!

we take it as a function of the entropy densitys, mass den-
sity r, the electric and magnetic fieldD andB, the electric
polarizationP, its canonical conjugatea ~that will turn out to
be essentially;Ṗ), and the thermodynamic momentum de
sity g,

dUMac5Tds1mdr1v•dg1E•dD1H•dB1h•dP1b•da,
~4!

where the thermodynamic momentum densityg is related to
the total momentum density

gtot5rv1~E3H!/c ~5!
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through@7,10#

g5gtot2D3B/c. ~6!

As soon as the energy functionUMac is known, the tempera
ture T, chemical potentialm, velocity v, field strengthsE
andH are also determined.~In accordance with@1#, the po-
larization defined here is a rest frame quantity,P[D0
2E0 .)

Isotropy of space results in the identity

E3D1H3B1h3P1b3a1v3g50. ~7!

The Maxwell equations

“•B50, Ḃ52c“3E, “•D5re, Ḋ5c“3H2rev
~8!

account for the motion ofD and B. Here, the dot indicates
partial temporal derivative]/]t and re denotes the macro
scopic charge density. The variablesr, U, gtot are conserved
their equations of motion take the form

ṙ1“•~rv!50, ~9!

U̇1“•Q50, ~10!

ġi
tot

1¹j~P i j 2P i j
D!50, ~11!

whereQ is the total energy flux, and (P i j 2P i j
D) is the sym-

metric total momentum flux, or total stress tensor. The
tropy is not conserved, and has a positive sourceR,

ṡ1“•~sv2f D!5R/T, R>0. ~12!

The dissipative part of entropy fluxf D describes especially
thermoconduction, while P i j

D accounts primarily for
viscosity-related phenomena.

The macroscopic variablesP anda are governed by equa
tions that are essentially of the Hamiltonian type,

Ṗ5]U/]a5b, ȧ52]U/]P52h,

with some supplementary terms needed to ensure the pr
transformation behavior, and to account for dissipation. Fi
the temporal derivative is replaced by the Galilean invari
operator that takes into account the effect of the local mo
ment of the medium,

Dt5] t1~v–“!2V3, ~13!

whereV[ 1
2“3v. Second, a dissipative forcehD is intro-

duced in the equation fora to account for electromagneti
dissipation that~in the linear case! is usually taken care of by
an imaginary term in the electric permittivity«. Third, the
polarization is changed if the medium undergoes volume
latation, as a term2P(“v) appears in the equation of mo
tion for P,

DtP5b2P~“•v!, Dta52h2hD. ~14!
-

er
t,
t

e-

i-

The dissipative terms are determined with the famil
method of irreversible thermodynamics: We first identify t
entropy production as

R1U̇mic5fD
•~“T!1hD

•b1P i j
Dv i j , ~15!

wherev i j 5
1
2 (“iv j1“jv i). Then take the fluxes as propo

tional to the thermodynamic forces,

S P ik
D

f i
D

hi
D
D 5S h ik j l a ik j b ik j

ā i j l k i j l i j

b̄ i j l l̄ i j z i j

D S v j l

“jT

bj

D ~16!

~appropriate Onsager reciprocity relations are implied!.
The energy flux is

Qi5~Ts1m%1vkgk!v i2T fi
D2v jP j i

D1c„E3H…i1v i~h•P!

1 1
2 @v3~h3P1b3a!# i . ~17!

~the last two terms were erroneously omitted from@1#!. This
expression may be rewritten as

Qi5c~E03H0! i2 f i
DT1UMacv i1~P i j 2P i j

D!v j2vkgk
totv i ,

~18!

to see that the velocity-dependent terms do come from
Lorentz-Galilean transformation, discussed, e.g., in@8#. (E0

[E1v3B/c andH0[H2v3D/c are the restframe fields.!
The stress tensor is symmetric and given as

P i j 5
1
2 @v igj2EiD j2HiBj1~ i↔ j !#

1~Ts1mr1g•v1H•B1E•D1h•P2UMac!d i j .

~19!

Frequently, there are many different resonance frequ
cies of the polarization, not just the single one, given here
vp . This fact can be accounted for by introducing as ma
‘‘subpolarizations,’’

D2E5P5( Pa , ~20!

chosen such that the two squared order terms of the en
are diagonal,

U0
em5•••1( ~Pa

2/xa1xava
2aa

2!/21•••. ~21!

Close to one resonancea, if it is well separated, as all the
other subpolarizations are not excited, we may simply s
stitutePa for P.

C. Some explicit expressions

Now, the above equations are rendered more explicit
an expansion of the energy function in the vector-variab
D, B, P, a, and v to third order, as this is sufficient for a
comparison to the linear results by Brillouin and Pitaevskiı˘’s.
For a magnetically inactive medium~i.e., taking the static
magnetic permeability as 1!, such an expansion yields
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UMac5Umat1 1
2 B21 1

2 D22D•P1 1
2 P2/x1 1

2 xvp
2a2

2jB•~P3a!1 1
2 rv21O 4, ~22!

whereO n denotes terms ofnth or higher order in the vecto
variables (D,B,P,a,v). The energy density in the absence
electromagnetic fields isUmat(s,r); the coefficientx is re-
lated to the conventional static dielectric susceptibilityx8
5P/E by x8215x2121; vp

2 is the dielectric resonance fre
quency;j is connected to the magnetic cyclotron-frequen
vB ; all these parameters are in principle functions ofr and
s.

Obtaining the differential form from Eqs.~22! and ~6!

d~UMac2v•g!5Tds1mdr1E•dD1H•dB1h•dP1b•da

2g•dv, ~23!

we can derive the thermodynamically conjugate variable

T5
]Umat

]s
1

P2

2

]x21

]s
1

a2

2

]xvp
2

]s
2B•~P3a!

]j

]s
1O 4,

~24!

m5
]Umat

]r
1

P2

2

]x21

]r
1

a2

2

]xvp
2

]r
2B–~P3a!

]j

]r
2

1

2
v2

1O 4, ~25!

E5D2P2v3M1O 3, ~26!

H5B2j~P3a!1
1

c
v3P1O 3 ~27!

h5
1

x
P2D2ja3B1

1

c
B3v1O 3, ~28!

b5xvp
2a2jB3P1O 3. ~29!

Note that the magnetizationM[B2H as given in Eq.
~27! is a term of orderO 2. So the difference in the polariza
tion v3M , between the rest frame quantityD02E0 and the
laboratory quantityD2E, is of orderO 3. Within the accu-
racy of the above equations, it is therefore ignored.

Inserting Eq.~29! in Eq. ~14!, we obtain the expression

a5
1

xvp
2 @DtP1P~“–v!1jB3P#1O 3 ~30!

that may be used to eliminatea in the above formulas, and
write them instead withṖ. Especially, the magnetization i
the rest frame and to lowest order is then (j/xvp

2)P3Ṗ. The
nonmagnetic magnetization is now seen to result from ro
tions of the polarization.

For a qualitative estimate of the coefficientj, envision
electrons revolving around their ion centers@8#. Assuming
the rotations to occur in phase, the magnetization associ
with it is (qene/2me)L , whereqe andme are the charge and
mass of the electrons, whilene denotes their density. Th
angular moment of the electrons,L5mere3 ṙe ~with re the
f

y

-

ed

radius of the circular motion! can also be written asL
5(me /qe

2vp
2)P3Ṗ, because the polarizationP is qenere .

The attendant magnetization isM5(1/2qene)P3Ṗ. So the
coefficientj is

j5xvp
2/2qene . ~31!

Particularly for an electron plasma,x51, and vp can be
considered as the plasma frequency (qe

2ne /me)
1/2. Equation

~31! reduces toj5qe/2me52vB/2B, with vB52Bqe /me
the plasma cyclotron frequency.

III. MONOCHROMATIC APPROXIMATIONS

With the help of a closed dissipationless ac circuit, Pita
vski� obtained a number of important results on the effects
a high-frequency field in a medium@6#. Because of the spe
cial setup, the results are subject to certain restrictions
order to compare our theory with his work, the same lim
will be taken in our theory. Therefore, we shall conside
transparent medium exposed to a strictly monochrom
electric field:

E5 1
2Ee2iv t1c.c., Ė50, ~32!

whereE is the constant amplitude andv the frequency. From
now on, we shall always assume that the medium is at r
so any velocity-dependent terms will be discarded. Beca
only the electric properties are of interest, we also omit
quickly oscillating part of magnetic field in the medium, a
in @6#, though a strong, constant magnetic field is allowed
be present. If the material coefficientsx, vp

2 , j are constant
with respect to time, the inductionD and polarizationP will
also take the monochromatic form

D5 1
2De2iv t1c.c., P5 1

2Pe2iv t1c.c. ~33!

However, ifx, vp
2 , j, andB are allowed to vary—slowly—

via their dependence on the density or temperature, the fi
D andP will become quasimonochromatic. In this case, w
may still hold v to be strictly constant, while allowing the
amplitudesD, P to change slowly with time. The quas
monochromatic situation will be studied in Sec. III E.

In what follows, the dynamic equations given in the pr
vious section will be investigated, under the preconditio
mentioned above. We will show in detail the derivations
four formulas, all well known in the literature@4#.

A. Permittivity

The frequency-dependent permittivity« i j is calculated
from the equation of motion forP. The expression is given
by inserting Eqs.~30! and ~28! into Eq. ~14!, taking the co-
efficientsx, j and the magnetic fieldB as constants. Neglect
ing the velocity-dependent terms, we have

D2
P

x
22

jB3Ṗ

xvp
2

2
P̈

xvp
2

50. ~34!

If the fields E, P assume the monochromatic form of Eq
~32! and ~33!, the above equation becomes
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S 12
1

x
1

v2

xvp
2DP12i

jv

xvp
2

B3P1E50. ~35!

Solving it for P, we obtain

P5~«121!E1«2~B–E!B1 i«3~E3B! ~36!

with

«1512
xvp

2~v22vp
21xvp

2!

~v22vp
21xvp

2!22v2vB
2

, ~37!

«25
xvp

2v2vB
2

@~v22vp
21xvp

2!22v2vB
2 #~v22vp

21xvp
2!B2

~38!

and

«35
xvp

2vvB

@~v22vp
21xvp

2!22v2vB
2 #B

, ~39!

where

vB522jB. ~40!

Using the fact thatPi5(« ik2d ik)Ek , we observe from
Eq. ~36! that the permittivity is

« ik5«1d ik1«2BiBk1 i«3e iklBl , ~41!

wheree ikl is the total antisymmetric tensor,e12351. In the
low frequency limit v→0, we have according to Eq.~37!
«151/(12x). Note that the imaginary term in~41! is not
connected to dissipation. It is a purely reactive term. T
can best be seen from its invariance under the time-reve
operation:v→2v, Bi→2Bi .

B. Energy density

Eliminating the quantitya in the energy function~22!
with the help of Eq.~30!, we get, for a medium at rest an
including terms of third order in the field

U5Umat1
B2

2
1

D2

2
2D•P1

P2

2x
1

Ṗ2

2xvp
2

. ~42!

Now consider the monochromatic case~32! and ~33! and
apply a time-averaged procedure denoted as^ &, the energy
density is then given as

^U&5Umat1
B2

2
1 1

4EkEk* 1
1

4xS 11
v2

vp
2 2x DPkPk*

or
s
al

^U&5Umat1
B2

2
1 1

4 uEu2

1
1

4S 1

x
1

v2

xvp
2

21D ~«km2dkm!~«kn* 2dkn!EmEn* ,

~43!

where the asterisk denotes complex conjugation. Becaus
our work the permittivity is given by Eqs.~41! and ~37!–
~39!, we can verify by direct computations that the equati

]v«mn

]v
5dmn1

1

xS 11
v2

vp
2 2x D ~«km2dkm!~«kn* 2dkn!

~44!

holds for this form of permittivity. So the time-averaged e
ergy density could be expressed as

^U&5Umat1
B2

2
1

1

4

]v«mn

]v
EmEn* , ~45!

which is Brillouin’s expression for the time-averaged ener
density of the electric field@3#.

C. Pitaevski� magnetization

Equation ~27! shows that a magnetization could be i
duced dynamically in an electrically polarizable medium,
though the static magnetic permeability is 1. Inserting E
~30! in Eq. ~27! we obtain, for a medium at rest, the magn
tization

M5
j

xvp
2

P3Ṗ1O 3. ~46!

In the monochromatic approximation, the time-average
this magnetization is the same as that obtained by Pitaev�

@6#. Indeed, inserting Eqs.~32! and ~33! in ~46! we have

^M & i5
ivj

2xvp
2 ~P3P* ! i

5
ivj

2xvp
2

e i jk~« jm2d jm!~«kn* 2dkn!EmEn* . ~47!

With the help of the expression of the permittivity~41!,
~37!–~39!, one can show the validity of the equation

ivj

xvp
2

e i jk~« jm2d jm!~«kn* 2dkn!5
1

2

]«nm

]Bi
. ~48!

So Eq.~47! possesses the form given by Pitaevski�

^M &5
1

4

]«mn

]B
Em* En . ~49!
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D. Stress tensor

Inserting the expressions~22!, ~23!, and~25! for U, T, m into the stress~19! and eliminating the fieldsB, a, h with the help
of Eqs.~27!, ~28!, and~30!, the stress becomes

P i j 5F p01
H2

2
1

E2

2
1

1

2S 1

x
21D P22

Ṗ2

2xvp
2

2
j

xvp
2

H–~P3Ṗ!1
P2

2 S r
]

]r

1

x D1
1

2

Ṗ2

x2vp
4

r
]xvp

2

]r
2H–~P3Ṗ!

3S r
]

]r

j

xvp
2D Gd i j 2HiH j2

1
2 @EiD j1MiH j1~ i↔ j !#1O 4, ~50!

wherep0 is pressure of the medium in the case without electromagnetic fields,

p0~r,s!52Umat1r
]Umat

]r
1s

]Umat

]s
. ~51!

Here, in order to avoid unnecessarily complicated formulas, we also neglect the entropy dependence of the parametex, vp
2 ,

j in ~50!. When the two electric fields take the monochromatic form~32! and ~33!, we obtain after the time-averagin
procedure,

^P i j &5H p01
H2

2
1

1

4
EE* 2

v22vp
21xvp

2

4xvp
2

PP* 2
ivj

2xvp
2 ~P3P* !H1

1

4x2vp
2H

@H~v22vp
2!PP* 2 ivvH~P3P* !H#r

]x

]r

1
1

4xvp
4H

@Hv2PP* 2 ivvH~P3P* !H#r
]vp

2

]r
1

iv

4xvp
2H

~P3P* !Hr
]vH

]r J d i j 2HiH j2
1
8 ~EiDj* 1EjDi* 1c.c.!

2
1

2
~^M & iH j1^M & jHi !. ~52!
Because the difference betweenB andH @i.e., the Pitaevski�
magnetization~49!# is of second order inE, we can write the
formula ~36! for P to the same accuracy as

P5~«121!E1«2~H–E!H1 i«3~E3H!, ~53!

with

«1512
xvp

2~v22vp
21xvp

2!

~v22vp
21xvp

2!22v2vH
2

, ~54!

«25
xvp

2v2vH
2

@~v22vp
21xvp

2!22v2vH
2 #~v22vp

21xvp
2!H2

~55!

and

«35
xvp

2vvH

@~v22vp
21xvp

2!22v2vH
2 #H

, ~56!

where

vH522jH. ~57!

Now inserting in the stress~52! the expression~53!, it be-
comes
^P i j &5H p01
H2

2
2

1

4S r
]« lm

]r
2« lmD El* EmJ d i j 2HiH j

2
1

8
~EiDj* 1EjDi* 1c.c.!2 1

2 ~^M & iH j1^M & jHi !,

~58!

where we have used the following equations valid for the«1 ,
«2 , «3 given by Eqs.~54!–~56!,

]«1

]x
5

vp
22v2

x2vp
2 @~«121!21«3

2H2#2
2vvHH

x2vp
2

«3~«121!,

~59!

]«2

]x
5

vp
22v2

x2vp
2 @2«2~«121!1«2

2H22«3
2#

1
2vvH

x2vp
2H

«3~«121!, ~60!

]«3

]x
52

vp
22v2

x2vp
2

«3~«121!2
vvH

x2vp
2H

@~«121!21«3
2H2#,

~61!
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]«1

]vp
2

52
v2

xvp
4 @~«121!21«3

2H2#2
2vvHH

xvp
4

«3~«121!,

~62!

]«2

]vp
2

52
v2

xvp
4 @2«2~«121!1«2

2H22«3
2#

1
2vvH

xvp
4H

«3~«121!, ~63!

]«3

]vp
2

52
2v2

xvp
4

«3~«121!2
vvH

xvp
4H

@~«121!21«3
2H2#,

~64!
]«1

]vH
5

2vH

xvp
2

«3~«121!, ~65!

]«2

]vH
52

2v

xvp
2H

«3~«121!, ~66!

]«3

]vH
5

v

xvp
2H

@~«121!21«3
2H2#. ~67!

Using Eq. ~49! and the fact thatDi5« imEm , we can also
write the tensor~58! into the form
.

ion
de of
^P i j &5H p01
H2

2
2
El* Em

4 S r
]« lm

]r
2« lmD J d i j 2HiH j2

1
4 H «1EiEj* 1«2~HE* !EiH j1«2~HE!Ei* H j

1HiH jF ]«1

]H2EE* 1
]«2

]H2 ~HE!~HE* !1 i
]«3

]H2 ~E* 3E!HG1
i«3

2
@Ei* ~E3H! j1Ei~H3E* ! j1Hi~E* 3E! j #1~ i↔ j !J .

~68!

If the following identity is noted

Ei* ~E3H! j1Ei~H3E* ! j1Hi~E* 3E! j5~E* 3E!–Hd i j , ~69!

we finally obtain

^P i j &5H p01
H2

2
2
El* Em

4 S r
]« lm

]r
2

« lm1« lm*

2 D J d i j 2
1
4 @«1EiEj* 1«2~HE* !~EiH j1EjHi !1c.c.#

2HiH j2
HiH j

2 F ]«1

]H2EE* 1
]«2

]H2 ~HE!~HE* !1 i
]«3

]H2 ~E* 3E!HG . ~70!

This agrees with Pitaevski�’s stress tensor of a variable electric field in a liquid located in a strong magnetic field@6#.

E. Time-dependent permittivity

In the previous subsections, we assumed that the parametersx, vp
2 , j and the magnetic fieldB are time independent

Consequently, the permittivity discussed in the Sec. III A is static. Now, we will abandon the restriction and allowx,vp
2 ,j,B

to change slowly with time. This case is naturally accounted for by Eqs.~14!, ~28!, and~30!, the equation of motion forP,

]

]tS Ṗ

xvp
2

1
2jB

xvp
2

3PD 2S ]

]t

jB

xvp
2D 3P1S 1

x
21DP2E50. ~71!

Here, we again neglected the dissipationhD and considered a stationary medium:v(r ,t)[0. Comparing the equation~71! with
~34!, we can see that the temporal variations ofx,vp

2 ,j,B give rise to additional terms, which result in a dynamic correct
« i j

dyn to the static dielectric permittivity obtained in Sec. III A. In other words, the relationship between the amplitu
polarizationP and that of electric fieldE is no longer given by Eq.~36!, but by

Pi5~« i j 2d i j !Ej1« i j
dynEj , ~72!

where« i j is given by Eqs.~41! and~37!–~39!. « i j
dyn may be calculated by retaining a monochromatic electric field in Eq.~71!:

Ė50. Yet, because« is now time-dependent, the amplitude of polarizationP will change with time,Ṗi5 «̇ i jEj . And Eq.~71!
becomes
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S 12
1

x
1

v2

xvp
2DP12i

jv

xvp
2

B3P1E1
]

]tS 2iv

xvp
2
«̂E2

2jB

xvp
2

3 «̂ED 2 ivS ]

]t

1

xvp
2D ~ «̂11!E1S ]

]t

jB

xvp
2D 3~ «̂11!E50,

~73!

where«̂ is matrix notation of the permittivity~41!. Solving forP, we obtain

« i j
dyn5~« im2d im!F 2iv

xvp
2
«̇m j1 ivS ]

]t

1

xvp
2D ~«m j2dm j!2

2j

xvp
2

emnlBn«̇ l j 2emnlS ]

]t

jBn

xvp
2D ~« l j 2d l j !G . ~74!
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Together with the static permittivity derived before, this d
namic correction provides the expression for the full tim
dependent permittivity.

To compare with@6#, we decompose the dynamic corre
tion ~74! into a Hermitian and an anti-Hermitian part:

« i j
dyn58« i j

dyn1 i 9« i j
dyn. ~75!

Both matrices8«dyn and 9«dyn may have complex elements
but must be Hermitian. In accordance with~75!, we may also
call them the real and imaginary parts of« i j

dyn. Particularly,
the imaginary part is

9« i j
dyn5

i

2
~« j i

dyn* 2« i j
dyn!,

which can be also written as

]

]tF ~« im2d im!S vdmn1 i jemknBk

xvp
2 D ~«n j2dn j!G , ~76!

here the fact« i j* 5« j i is used. From the expression~41! and
~37!–~39! for «, one can show that the equation

~« im2d im!S vdmn1 i jemknBk

xvp
2 D ~«n j2dn j!5

1

2

]« i j

]v

~77!

is valid. So the imaginary part~76! of the dynamic contribu-
tion to the permittivity is

9« i j
dyn5

1

2

]2« i j

]v]t
. ~78!

This formula was first obtained in@6#.
-

de
-
IV. DISCUSSIONS

Because both the dispersion and nonlinearity are
counted for, the hydrodynamic theory of dispersion sketch
in Sec. II is a fairly complete theory for the dynamics of
fluid interacting with varying fields. The theory is derived b
generalizing the hydrodynamic approach, but the resul
consistent with the work of Pitaevski�, who starts from rather
different physics.

Though not shown here, the present theory reduces to
hydrodynamic one@2#, in the low frequency limitv→0. It is
also in agreement with the Barash-Karpman’s stress te
derived for quasimonochromatic field~i.e., including the
lowest-order effects of temporal variation of the field amp
tudeE) @9#. All these features support the statement that
basic equations shown in Sec. II are correctly formulat
particularly the fundamental differential relation~4!.

In our theory for dispersive media, Pitaevski�’s magneti-
zation appears as a consequence of circular motions of
polarization. In contrast to the conventional magnetization
atomic origin, Pitaevski�’s magnetization is macroscopic
Because the circular motion ofP is usually accompanied by
a rotating electric field, Pitaevski�’s magnetization is less
suitably generated by linearly polarized electromagne
fields, as suggested in@6#. It is remarkable that the explana
tion to this phenomenon was given by the first nonline
term in the expansion of the energy, Eq.~22!. We expect it to
be an important nonlinear effect, and to play a significa
role in the nonlinear interaction between matter and inte
laser lights.
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Ĥ5H/Amo, B̂5BAmo, Ê5E/Aeo, D̂5DAeo,
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