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Electromagnetic force in dispersive and transparent media
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A hydrodynamic-type, macroscopic theory was derived recently to account for dissipation and dispersion of
electromagnetic field, in nonstationary condensed systems of nonlinear constitutive reMéitioimsJiang and
Mario Liu, Phys. Rev. Lett77, 1043(1996]. As it is published, some algebra and the more subtle of the
reasonings had to be left out. They are presented in this paper and irftlud®v the results algebraically
reduce to the classic ones in the appropriate limits,(@hchore thoughts on the range of validity of the theory,
especially concerning dissipatiof51063-651X98)06611-3

PACS numbgs): 41.20.Bt, 47.10tg, 52.35.Mw, 52.25-b

[. INTRODUCTION in addition to the linearity of the constitutive relations—
Brillouin obtained the field energy in 1921, while Pitaevskii,
Two theories were recently set up to account for the beforty years later, arrived at the attendant expression for the
havior of condensed media subject to strong external fieldsotal stress tensor, see Landau and Lifsh&f; and the re-
They describe dissipation and dispersion, and yield an exview article by Kentwell and Jondd].
plicit expression for the electromagnetic force. The firstis a If we draw a diagram of field strength versus frequency
hydrodynamic theory valid for low frequenci¢g], and the  «, with the field strength pointing to the right, ane up-
second a generalization for higher frequen¢itls ward, a vertical stripe along the axis represents the range
Let us first understand how the hydrodynamic theory andf validity for the linear response theory, while the hydrody-
the usual theory of linear response complement each otheggmic theory reigns within a horizontal stripe along the field
The macroscopic Maxwell equations, given in terms of the;yis The expressions of Brillouin and Pitaevsiie valid in

four fieldsE, D, H, andB, need constitutive relations link- jsgjated patches in the vertical stripe, wherever dissipation is
ing them to be closed. The form of these relations dependﬁegligible[S].

on two physical parameters, the frequency and the field
strength. Weak fields are necessary for the linear responge,
theory (€E=D,uH=B) to hold; while the hydrodynamic
constitutive relationg2] presuppose small frequenciésut

The parameter space beyond the above two perpendicular
ipes needs a theory that is a generalization of both the
linear response theory and the hydrodynamic theory, as it
not the weakness of fieliis must simultaneously account for dissipation, dispersion, non-

There is a second closure problem one level up that mangwear constitutive relations, and finite velocities. Although

are not as aware of: A theory of electromagnetism in materiap"€ Might expect principal difficulties in setting up such a
is only complete if it also accounts for the feedback, theth€0rY, since neither of the two parameters, field and fre-
electromagnetic force on the material. In the microscopicduency, remains small, we arep to and maybe slightly
electrodynamics, this is the Lorentz force—the MaxwellPeyond the optical frequencies10® Hz) still in the realm
equations yield the field produced by the sources, while th€®f macroscopic physics, as the electromagnetic wavelength
Lorentz force(in conjunction with the Newton equatipde- ~ remains large compared to the atomic graininess. And when
scribes how, conversely, the field changt® position and  Seeking the expression for the electromagnetic force on a

motion of) the sources. volume element of condensed matter, exerted(s&gy a
In the macroscopic theory, we also need an expression fditrong laser beam, if we confine our curiosity to the tempo-
the force, now in terms of the macroscopic fielis,D, H, rally averaged force—with a resolution larger than the time

andB. This information is contained in two related quanti- Needed to establish local equiliorium—a simple, universal
ties: (i) the additional energy due to the presence of the elecand hydrodynamic-type theory is still possible. Such a theory
tromagnetic field, andii) the flux of the conserved, total Was derived recently1] by generalizing the hydrodynamic
momentum density. The hydrodynamic theory provides untheory of electromagnetism. _ .
ambiguous expressions for both, and is therefore closed and The generalization was accomplished by taking the polar-
complete even at this second level. Circumstances are leggation P and its temporal derivative as independent vari-
fortunate for the linear response theory, as these two expreables, and explicitly deriving the equation of motion far
sions are known here only with a string of additional restric-This step eliminates the necessity for frequency dependent
tions. constitutive relations, which lies at the root of the difficulties
Assuming transparencii.e., lack of dissipatio quasi- one encounters when attempting to extend the linear re-
monochromatic external field and stationarifye., identi-  sponse theory into the nonlinear regidm this first step, the
cally vanishing velocity field of the condensed systerall magnetization has not been included as an independent vari-
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able. So the theory is only valid for statically nonmagnetichave to abandon the hydrodynamic theory and embrace the
media) Boltzmann theory which, despite its undeniable usefulness,
It is important to realize that the questions posed and anis both a far more complex and a less general theory—it
swered here are very close to experiments, and hence cobnsiders the vast number of microscopic degrees of freedom
great relevance. This is a theory the variables of which arexplicitly, and it is confined to dilute systems. The question
directly measurable: the macroscopic electromagnetic fieldsherefore is whether an appropriately generalized hydrody-
the density, the temperature, and the averaged particle velonamic theory can be made to account for some of the more
ity. Consisting of equations of motion, the theory predicts theinteresting aspects at higher frequencies, and save us from
values of these variables for the next instance if their preserthe complexities of the Boltzmann theory.
values are given. A typical result is the density distribution Let us concentrate on one such microscopic, honthermo-
of particles, and the associated temperature field, in the preglynamic variable, the polarizatidP. Actually, as far as its
ence of an oscillating electromagnetic field. spatial extent is concerned, it is a macroscopic rather than a
In this paper, we show explicitly that the nonlinear ex- microscopic variable, but it is certainly a dependent one in
pressions for the energy and the stress tensor indeed reduge hydrodynamic limit, as long as7p<<1 holds, whererp
to the known ones, of Brillouin and Pitaevskim the speci- s the longest oP’s characteristic times.
fied limit. Because of the chosen approach of generalization In a dielectric mediumP has many characteristic times,
discussed above, this outcome is by no mean obvious amgiven by its resonance frequencies and their widths. If they
assured. Besides, the associated algebra is fairly involvegre well separated, then the equation of motionAprclose
and needs to be presented. Once accomplished, this providgsone resonance and in the simplest case considered below
two bonuses: It strengthens our trust in the new theory anis
provides a transparent interpretation for the old and classic .
results which, having relied heavily on algebra, are some- |5/w'2)_TP+ P=xD, @
what lacking in appropriate physical pictures.
This generalized, hydrodynamic-type macroscopic theory

. ! . ; cf. Eq. (14) of the next section, wher@, and 7 are the
for higher frequencies, or for brevityhyydrodynamic theory . P )

. . ) . resonance frequency and a damping time of the given reso-
of dispersion will be presented in Sec. Il, to render the

: : : nance. This resonance may be overdampezt 1/ or
present manuscript self-containe@Nevertheless, since we y Wap)

shall mostly only list the relevant formulas and abstain fromSharap]ltyerrsvsh?;?tmg Kfla}llr (il;’gt'ioir:g ntgeioghzﬁﬁt:élsgg dteirr?teis
repeating all the reasoning and arguments that lead to the? _ P 9 P '

2 A ) A .
new theory, the reader is advised to also read REf) In respectivelyr and 2/(,7). The time scale foP’s motion in

addition, the question about the range of validity of the newthe resonating case isdy. (Note that going to a different
theory is discussed here in greater detail thafiliy at the ~ 'eSonanceyp will change, it therefore depends on the fre-

beginning of the next section. guency of the _extgrnal fi_eI)j. . .
Section IIl incorporates the specified approximations and ! the polarizationP is a specially slow variablesp

P 10
deduces four results. They are compared to the energy deffTloc (Whereq. is around 107 s at usual temperatures
sity by Brillouin, and to three formulas by Pitaevskine and densitigswe may increase the range of validity of the

total stress tensor, the “nonmagnetic’ magnetization, and'ydrodynamic electromagnetic theory, from<1/7p to o
the time dependent permittivity. Section IV ends with a brief<1/7ioc, Dy taking the energy as a local function alsoFof

summary. P, and derive the equation of motion fBt There is quite a
number of systems with a largs.: All electrorheological
Il. THE HYDRODYNAMIC THEORY OF DISPERSION fluids have especially larges , of the order of 10* s, but

other complex fluids with large molecules and a permanent
In this section, we shall first discuss in some detail themolecular dipole momentsuch as nematic liquid crystals
range of validity of the theory, then present its complete sehiso have a slow polarizatiofEven the comparatively small
of equations, and specify the theory by an expansion of thguater molecule with its permanent dipole moment has a
thermodynamic energy to third order in the field variables. ground 10° s.) The hydrodynamic theory of dispersion
presented below is unqualifiedly valid for these systems

A. Range of validity (though it should usually be enough to negledh the equa-

The proper hydrodynamic theory of electromagnetji@in  tion of motion, or equivalently, exclude as an additional
accounts for the macroscopic dynamics of continuous medigariable) We shall refer to this scenario as hydrodynamic
in the low frequency limit, of a system that is charged ordispersion.
exposed to external fields. Local thermodynamic equilibrium Interestingly, essentially the same set of equations also
holds, and the set of hydrodynamic variables is identical taaccounts for a system in the ballistic regime, for quickly
that of the thermodynamic variables. The equations of moescillating electric fields and polarizations,w}h<< 7j,—if
tion are conservation laws and the Maxwell equations, inwe confine the theory to averaged quantities, such as what is
cluding irreversible terms accounting for dissipation. the averaged force that a high frequency external field exerts

At higher frequencies, microscopic variables deviate moren a volume elementNote that this low resolution is quite
and more from equilibrium, becoming independent, and fisufficient for resolving the hydrodynamic responses to a high
nally ballistic. Denoting the timer,,. needed to establish frequency field. This scenario we shall refer to as ballistic
local equilibrium, this starts to happen whenr,. is no  dispersion. Clearly, we need to understand why the equations
longer small. To account for this circumstance, we usuallyfor hydrodynamic dispersion also work for ballistic disper-
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sion, and what the restrictions are. fying microscopic approach such as the Boltzmann theory,
First, a coarse grained, hydrodynamic-type description ishere are reasons why we may quite generally nedlétt.
at all possible because the field variabsD, andB vary While terms such a®? and P?, of macroscopic extent,

(due to the largeness of the light velogityn macroscopic, coherently add up over many periods to yield slowly varying
hydrodynamic length scales. Second, most of the gener?:lontributions,fv(Pz) and(F’z), in the momentum and en-

principles used as input to consider hydrodynamic dispersiogrgy flux, and thereby directly alter the slow, hydrodynamic

are also valid here. Especially, the total energy and momer\iariables, the quantities; are random and of microscopic

tum remain conserved. The one exception is local eqUIIIb'spatial scales. So, instead of adding up, they further dissipate

rium, and equivalently, a defined value for the entropy den- nd degrade, to eventually turn into heat. On the coarse,

sity. The lack of these introduces some caveats with respe drodynamic time scale, we may therefore Iu(hb“ic) into
to temporal resolution and to dissipation. More specifically,heathdS and ((a/at)uf’““) into the heat productioR

they are the following: mic i .
(i) In the ballistic regime, the variables of the theory di- ;Ii'tr;en, clearly U™ may be neglected as an independent en
vide into two types, fast. and .SIOW' The f'e!q variables are On a more operational level, the very criterion by which
fast, the rest are slow, including the densities of mass . . . )
we have singled ouP and P from the lot of microscopic

entropy s, total energyu, and total momentung®. The _ \ o ; .
equations of motion of the field variables are highly accuratedédrees of freedom is their qualitatively different behavior.
Given a certain energy content in the figdandB, there is

resolving temporal increments much less than,t/the ac- _
tual hydrodynamic equations are coarse, with a resolutio® back and forth of energy flow betweé&n B, P, andP
low compared tor,,.. And because every differential equa- within each period; while the field energy that leaks into the
tion, consistently, has a unique resolution, all field terms apother microscopic degrees of freedom is usually lost. In fact,
pearing in the slow, hydrodynamic equations need to be agor an overdamped resonance, it(& mentionedappropri-
propriately averaged. ate to excludd® as an explicit variable, and consider it as one
(i) The hydrodynamic theory of dispersion presented inof the many ordinary microscopic degrees of freedom, as the
the next section is clearly valid for ballistic dispersion in the energy leaked int® is lost to the field. On the other hand, if
transparent region. But because of the arguments listed bg-system involves more variables in the tidallike transfer of
low, it should remain valid even if field dissipation is strong. fie|d energy, the present theory needs to be generalized to
Taking electromagnetic dissipation into account, the totalg|so include them—one example comes readily to mind: an

conserved energy divides into three parts, independent magnetization.
’ Finally, a technical remark. Being a function also of the
U=uymaty yemy ymi, (2)  slow variables|J®™is, even without any dissipatidior elec-

tric charge, not conserved by itself, and the permeability

The first is the thermodynamic energy in the absence of aWi” in general contain an imaginary part to account for this

external field; the second is the additional energy in the preg—""Ct'
ence of a field; and the third is the rest, the energy of all
microscopic variables not given in the first two explicitly, B. Equations of motion

Um"_’(xi,_xg -+ ). Thevariablesx; are defined such thatthey  The complete hydrodynamic theory of dispersion consists
vanish in local equilibrium, so they are irrelevant for the of 5 closed set of partial differential equations that governs
consideration of hydrodynamic dispersion. In the ballistic ré+the dynamics of the medium and the electromagnetic field.
gime, U™ is finite and serves as a transit hall: ExternalThe structure of the equations is determined by general prin-
energy is being fed continually intd®", the electromagnetic ¢jples: the Maxwell equations, the Lorentz-Galilean transfor-

dissipation excites some microscopic degrees of freefam  mation, the thermodynamic theory, and the relevant conser-
and convertsU®™ into U™“—which after the comparably yation laws.

long time of 7, becomes heatUem—>U.mi°—>deS The Combining the two macroscopic energy densities,
rate at whichU®™ is lost is approximatelyJ *™~ —U®" rp, Mac + mat .« vem
the average time this energy stays in the transit hali jg, Um=um=+U ©)

so UM~ (7,./7p)U®™. The right side translates into

(710c/T)US™ for the overdamped oscillation, and into We take it as a function of the entropy densitymass den-

5(w3710c7)U™ for the resonating one. In the first case, weSity p, the electric and magnetic field andB, the electric

always haveU™cs>U®™ and in the second we mostly do, polarizationP, |t§ canonical conjugate (that will turn out to

rendering the transit hall usually large. be essentially- P), and the thermodynamic momentum den-
Including nonhydrodynamic variables suchRdeads to  sity g,

contributions~P and dU/JP in the energy and momentum

flux, see the next section. U™ is nonzero, we would ex- dUM&=Tds+ udp+v-dg+E-dD+H-dB+h-dP+b-da,

pect similar terms~x; anddU/dx; . These we may neglect (4)

in the transparent region of vanishing dissipation, defined as

the frequency regime where the stringent condimjw,ocr where the thermodynamic momentum dengtig related to

<1 holds, or equivalentlj ™c<U®™ so U™M¢ and its con-  the total momentum density

tributions may be neglected. Outside these regimes, although

circumstances are not as certain and more in need of a clari- g°'=pv+(ExXH)/c (5)
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through[7,10]

g=g°'—-DXB/c. (6)
As soon as the energy functi@h2¢ is known, the tempera-
ture T, chemical potentiaj, velocity v, field strengthsE
andH are also determinedln accordance with1], the po-
larization defined here is a rest frame quantiBs=Dg
- EO )

Isotropy of space results in the identity

EXD+HXB+hXP+bXxa+wvXxg=0. (7)

The Maxwell equations
V.-B=0, B=-CcVXE, V.-D=p°% D=cVXH—p%
€S)

account for the motion oD and B. Here, the dot indicates
partial temporal derivatived/ gt and p® denotes the macro-
scopic charge density. The variabjgesU, g are conserved,
their equations of motion take the form

p+V-(pv)=0, C)
U+V-Q=0, (10
g+ Vy(IT; = TI§) =0, e

whereQ is the total energy flux, and[j; —HiDJ-) is the sym-
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The dissipative terms are determined with the familiar
method of irreversible thermodynamics: We first identify the
entropy production as

R+U™Me=fP. (VT)+hP-b+T1]v;;, (15)
wherev;;= %(Viv,-+VJ—vi). Then take the fluxes as propor-
tional to the thermodynamic forces,

1 Tikjl  ikj  Bikj vj)
P |=| ay wi Nj || VT (16)
h? EJI :ij gij b;

(appropriate Onsager reciprocity relations are implied
The energy flux is

jHﬁ‘f’C(EXH)i"‘Ui(h' P)

17

Qi=(Ts+ue+v@vi—TH —v
+ [vX(hxXP+bxa)];.

(the last two terms were erroneously omitted frphf). This
expression may be rewritten as

Qi=Cc(E°XHO);— fPT+ UM%, + (I~ [17)v; — v, v; »
(18)

to see that the velocity-dependent terms do come from a

Lorentz-Galilean transformation, discussed, e.g[8h (E°

=E+uvXB/c andH’=H—uvXx D/c are the restframe fields.
The stress tensor is symmetric and given as

metric total momentum flux, or total stress tensor. The en- II;;=3[v;g;—E;D;—H;B;+(i<])]

tropy is not conserved, and has a positive solkce

s+V-(sv—fP)=R/T, R=0. (12
The dissipative part of entropy flul® describes especially
thermoconduction, while Hﬁ accounts primarily for
viscosity-related phenomena.

+(Ts+up+g-v+H-B+E-D+h-P-UMO) 5, .
(19
Frequently, there are many different resonance frequen-

cies of the polarization, not just the single one, given here as
o, . This fact can be accounted for by introducing as many

The macroscopic variablésanda are governed by equa- ‘‘Subpolarizations,”

tions that are essentially of the Hamiltonian type,

P=9gU/da=b, a=—dUl/dP=—h,

D-E=P=> P,, (20)

. chosen such that the two squared order terms of the energy
with some supplementary terms needed to ensure the propgr, diagonal

transformation behavior, and to account for dissipation. First,
the temporal derivative is replaced by the Galilean invariant
operator that takes into account the effect of the local move-
ment of the medium,

USM="+ 2 (P Xat Xaw3B D24 (2D)

Close to one resonanee, if it is well separated, as all the
other subpolarizations are not excited, we may simply sub-
stitute P, for P.

D=0+ (v-V)—QX, (13
where Q=1Vxuv. Second, a dissipative forde is intro-
duced in the equation fom to account for electromagnetic
dissipation thatin the linear cases usually taken care of by
an imaginary term in the electric permittivity. Third, the Now, the above equations are rendered more explicit by
polarization is changed if the medium undergoes volume dian expansion of the energy function in the vector-variables
latation, as a term- P(Vv) appears in the equation of mo- D, B, P, a, andv to third order, as this is sufficient for a
tion for P, comparison to the linear results by Brillouin and Pitaevskil
For a magnetically inactive mediutfi.e., taking the static
magnetic permeability as)1such an expansion yields

C. Some explicit expressions

D,P=b—P(V.v), Da=—h—hP. (14)
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uMac=ymaty 1 g24 1 p2-p.P+ L P/ y+ %XwSaZ radius 02f tzhe ci.rcular motigncan alsp pe written as
=(Me/dewy)PXP, because the polarizatioR is geNere.

1 2 4 . . -
—&B-(PXa)+ 3 pv°+ 07, (22)  The attendant magnetization 8 = (1/29.n)Px P. So the

. . coefficient¢ is
whereO" denotes terms afith or higher order in the vector ¢

variables D,B,P,a,v). The energy density in the absence of £= y02/29en (31)
. g . mal 8 . . . p'“Helle -

electromagnetic fields i8™2{(s,p); the coefficienty is re-
lated to the conventional static dielectric susceptibility Particularly for an electron plasma,=1, and w, can be
=P/E by x' "'=x"'-1; wj is the dielectric resonance fre- considered as the plasma frequenqgr(,/m.)*2. Equation
quency;¢ is connected to the magnetic cyclotron-frequency(31) reduces toé= q/2me= — wg/2B, With wg=—Bqg./m,
wg; all these parameters are in principle functiongpadnd  the plasma cyclotron frequency.
s.

Obtaining the differential form from Eq$22) and (6) Ill. MONOCHROMATIC APPROXIMATIONS
d(UM*~v.g)=Tds+udp+E-dD+H-dB+h-dP+b-da With the help of a closed dissipationless ac circuit, Pitae-

_g-dv 23) vskil obtained a number of important results on the effects of
9-dv, a high-frequency field in a mediuf$]. Because of the spe-

we can derive the thermodynamically conjugate variables, cial setup, the results are subject to certain restrictions. In
order to compare our theory with his work, the same limits

gumat P2 gyl g2 gye? o€ will be taken in our theory. Therefore, we shall consider a
= + = + = p—B-(P>< a)—+04 transparent medium exposed to a strictly monochromatic
as 2 Js 2 Js as P
electric field:
(24)
—leon—iowt o
&Umat_{— P2 aX—l az axwg 5 (P )ag 1 ) E—de +CC, 5 O, (32)
M= > > —B-(Pxa)=——=Jv : .
dp 2 dp 2 dp p 2 wheref is the constant amplitude argthe frequency. From
Y (25) now on, we shall always assume that the medium is at rest,
' so any velocity-dependent terms will be discarded. Because
E=D-P—0XM+03 (26) only the electric properties are of interest, we also omit the

quickly oscillating part of magnetic field in the medium, as
1 in [6], though a strong, constant magnetic field is allowed to
H=B—¢(Pxa)+ —vXP+ 03 (27)  be present. If the material coefficients cu,zj, ¢ are constant
¢ with respect to time, the inductiob and polarizatiorP will
also take the monochromatic form

1 1
=—P-D-¢axB+ -Bxv+03 - -
h XP D-¢axB cB v+ O, (28) D=1De “'+c.c., P=3iPe “'+c.c. (33

b:XwFZ)a— EBXP+0O83. (290  However, ify, a);, £, andB are allowed to vary—slowly—
via their dependence on the density or temperature, the fields
Note that the magnetizatioM=B—H as given in Eq. D andP will become quasimonochromatic. In this case, we
(27) is a term of orde?. So the difference in the polariza- may still hold » to be strictly constant, while allowing the
tion vXM, between the rest frame quantiy—Ey and the  amplitudesD, P to change slowly with time. The quasi-
laboratory quantityD—E, is of order®3. Within the accu- monochromatic situation will be studied in Sec. Il E.
racy of the above equations, it is therefore ignored. In what follows, the dynamic equations given in the pre-
Inserting Eq.(29) in Eqg. (14), we obtain the expression vious section will be investigated, under the preconditions
mentioned above. We will show in detalil the derivations of
1 four formulas, all well known in the literaturet].
a= 7[DtP+ P(V-v)+ éBXP]+ 03 (30

X e
p A. Permittivity

that may be used to el?minaaein the above formulas, and The frequency-dependent permittivity; is calculated
write them instead witlP. Especially, the magnetization in from the equation of motion foP. The expression is given

the rest frame and to lowest order is theixw;)PXP. The by inserting Eqs(30) and(28) into Eq. (14), taking the co-
nonmagnetic magnetization is now seen to result from rotaefficientsy, £ and the magnetic fielB as constants. Neglect-

tions of the polarization. ing the velocity-dependent terms, we have

For a qualitative estimate of the coefficiefit envision . ..
electrons revolving around their ion centég. Assuming p_P_BxXP_P _, (34)
the rotations to occur in phase, the magnetization associated X X3 Xw,zj '

with it is (qenes/2mg)L, whereq, andm, are the charge and

mass of the electrons, while, denotes their density. The |f the fields E, P assume the monochromatic form of Egs.
angular moment of the electronsi=mgr Xr, (with r, the  (32) and(33), the above equation becomes
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1 w? éw
1-—+—|P+2i —BXP+£E=0. (35
X Xwp Xwy
Solving it for P, we obtain
P=(e1—1)E+e,(B-E)B+iez(EXB) (36
with
2, 2 2 2
wi(w = wi+ yw;)
ey=1- 2 T XO (37
(0"~ wpt xop) — 0wy
Xwngwé
Er=
[(wz—wg-f—)(wp)z—w wB](w —ws-f—)(ws)Bz
(38)
and
Xwéwa (39
8 = 1
° [(wz—wg-kxw,z))z—wzwé]B
where
wg= —2£B. (40

Using the fact thatP,= (& —
Eq. (36) that the permittivity is

Sik)ék, we observe from

eik=e10ik T €2BBytiesen By, (41)
where €, is the total antisymmetric tenso¢;»s=1. In the
low frequency limitw—0, we have according to E¢37)
£,=1/(1— x). Note that the imaginary term i#1) is not
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2

B
(U)y=umes —+4[el
11 o?
+4 +__1 (&km= Skm) (ekn— Fkn) Em&r
X xo p

(43

where the asterisk denotes complex conjugation. Because in
our work the permittivity is given by Eq941) and (37)—
(39), we can verify by direct computations that the equation

dwEmn 1 w? *
=St | 1+ 22~ x| (k= S (80~ S

p
(44)

Jw

holds for this form of permittivity. So the time-averaged en-
ergy density could be expressed as

2 1 dwemn

<U>=Umat+?+ ZTgmg; ,

(45
which is Brillouin’s expression for the time-averaged energy
density of the electric field3].

C. Pitaevskii magnetization

Equation (27) shows that a magnetization could be in-
duced dynamically in an electrically polarizable medium, al-
though the static magnetic permeability is 1. Inserting Eq.
(30) in Eq. (27) we obtain, for a medium at rest, the magne-
tization

Mzisz P+03,. (46)

X®p

In the monochromatic approximation, the time-average of

connected to dissipation. It is a purely reactive term. Thighis magnetization is the same as that obtained by Pitaievski
can best be seen from its invariance under the time-reversgb]. Indeed, inserting Eq$32) and(33) in (46) we have

operation:w— — w, Bj— —B;.

B. Energy density
Eliminating the quantitya in the energy function22)

with the help of Eq(30), we get, for a medium at rest and

including terms of third order in the field

P
S (@2

Now consider the monochromatic caé&?) and (33) and
apply a time-averaged procedure denoted as the energy
density is then given as

2

mat B 1 1 ’
(Uy=U +7+Z€k8{;+a

w yk
1+ ——x | PP
Wy

or

(PXP*).
p
iwé
mfijk(sjm—
p

(M)i=

5jm)(£’lfn_ 5kn)gmg* (47)

With the help of the expression of the permittivitgl),
(37)—(39), one can show the validity of the equation

iwé 1 denm

X_wgfiik(sjm—(ﬂm)(sﬁn— =5 5g (49
So Eq.(47) possesses the form given by Pitaevski
1 0e
(M)=7 agnﬁng (49)
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D. Stress tensor

Inserting the expressioni22), (23), and(25) for U, T, u into the stres$19) and eliminating the fieldB, a, h with the help
of Egs.(27), (28), and(30), the stress becomes

O PN E Y [ P _ ¢ SH- (P><F>)+PZ i 1) L P2 oo H-(PXP)
; 1 o
X| poo— | |8~ HiHj=2[EDj+ MiH+(i= )]+ 0%, (50)
P)(wp

wherep, is pressure of the medium in the case without electromagnetic fields,

mat (9U mat
,5)=—Um+ +s
Po(p,S) P

s (52)

Here, in order to avoid unnecessarily complicated formulas, we also neglect the entropy dependence of the pnranﬁeters
¢ in (50). When the two electric fields take the monochromatic fd88) and (33), we obtain after the time-averaging

procedure,

H? 1., o'~ optxo, lw§ 1 2 2 : Ix
<Hij>: p0+ + &c:*_ 2 PP — Z(PXP*)H'FT[H(Q) —wp)PP*—IwwH(PXP*)H]p—
dxwy 2xw, 4x2wiH p
S S aw§+ N ] P,
4)(ng[ ) iwoy( ) ]PE 4)(pr( ) Pp (G HiH; s(&D] +&Df +c.c)
1
— (MY, +(M);H). -

Because the difference betweBrandH [i.e., the Pitaevski H2 1) depy
magnetizatior(49)] is of second order i, we can write the  {Iljj)=1{ Po+ 2 74P, Em & Emp 6ij—HiH;
formula (36) for P to the same accuracy as
1
P=(s,—1)E+e5(H-E)H+ieg(EXH), (53 — g (EDF +EDf +c.c) = z((M)iHj+(M);Hy),
with (58)
. X050 = wi+ xw?) 50 where we ha\;)e used the following equations valid fordhe
E1—1— y [ —
1 (02— w2+ x0d)P— w2l &2, €3 given by Eqs(54)—(56),
szwzwz (981 &),2)_(1)2 2 2(1) HH
£2=—— 5 A 5 N o 22 [(e1—1)*+e3H?]— 2,2 e3(e1—1),
[(w —wp+)(wp) ) wH](w —wp+ xop)H X X @y X @y
(55) (59)
and
deo wg— 2 2012 2
) v > [2e5(e1—1) +e5H — &3]
XWpwoy (56 X
€3~ ’
[(wz—ws-i-)(w'z))z—wzwa]H 20wy
— 5 &3(e1— 1), (60
where x“wpH
wy=—2¢H. (57 P 02— w2
o _ | =2 ey(e1—1)— 2” [(e1—1)2+82H2],
Now inserting in the stres?2) the expressiont53), it be- ax X wp X’ oH

comes (61)
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deq w? ) ,, 2woyH de;  20H
_2:__4[(81_1) +83H ]_ 4 83(81_1)! J - 83(81 1)1 (65)
Jwy, Xy Xwp Wy pr
(62)
de, w? dey 2w
— = —[2e,(e;—1)+&3H?— &2 —=———¢e3(e1—1), (66)
ﬁw,zj Xwﬁ[ 2(81 2 3] doy )(wSH ST
20wy 63
xwyH e © s a>2 [(s1—1)%+&3H?]. (67)
Jon  ywpH
des 202 o
—=——e3(e;—1)— (81— 1)%+e5H? _
Joy  xwp o wa)H[ ! s, Using Eq.(49) and the fact thaD;=¢;,&yn, We can also
write the tenso into the form
(64) ite th 58) i he f
|
H2 & &nl oe
(Iij)=| Po+ '4”‘(p a;m—slm)]a —HH;— H 8,6 +82(HE ) EH, +eo(HE E H;

[5*(8><H)1+5(H><<€*) FH(E XE ]+ (i=]);.

+HiH[ H2&5*+ °2 (HE)(HE ) +i HZ(S*XS)H

2

(68)

If the following identity is noted
E(EXH)+E(HXE )+ H{(EX X &)= (" XE)-HE;, (69

we finally obtain
H2 &&n[ deim emTel
<H”>={po+7— 4’"(,3 i '“2 ©| 8y dle1E 8 +ea(HE)(EH + EH) +e.c]

HiH = ) P8 oo, 902 ey (es 83 £ X EH 70

This agrees with Pitaevsis stress tensor of a variable electric field in a liquid located in a strong magnetig6ield

E. Time-dependent permittivity

In the previous subsections, we assumed that the pararn@ten% ¢ and the magnetic fiel@8 are time independent.
Consequently, the permittivity discussed in the Sec. Ill A is static. Now, we will abandon the restriction and(ablﬁw;t B
to change slowly with time. This case is naturally accounted for by B¢, (28), and(30), the equation of motion foP,

12 P 2¢B
—+—>XP

P §B
at X

P+(1—1)P—E=0. (71)

Here, we again neglected the dissipatithand considered a stationary mediumr,t)=0. Comparing the equatigi@1) with

(34), we can see that the temporal varlatlons(ozlb2 ¢,B give rise to additional terms, which result in a dynamic correction
d]y” to the static dielectric permittivity obtained in Sec. Il A. In other words, the relationship between the amplitude of

polarization? and that of electric field is no longer given by Eq.36), but by

"E;

y (72)

Plz(sij |J)5+8|]
wheresIJ is given by Egs(41) and(37)—(39). den may be calculated by retaining a monochromatic electric field in(EL):

£=0. Yet, because is now time-dependent, the amplitude of polarizatwill change with time,73i=éijé’j . And Eq.(72
becomes
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1 w? (o 2iwm. 2¢B . J 1 £
1-—+— 79+2|—B><73+8+ —285——2><88 —iw| =— (s DE+H| o — | X(e+1)E=0

(73

wheree is matrix notation of the permittivity41). Solving for P, we obtain

ZIw g 1 2¢ . Jd &€B,
Sﬂyn:(sim_ im) +|w( ot )(8m] mj)__zemnanglj emnl( at )(SII 5Ij) . (74)
X®p X®@p X®p

Together with the static permittivity derived before, this dy-
namic correction provides the expression for the full time-

dependent permittivity.

To compare with 6], we decompose the dynamic correc-

tion (74) into a Hermitian and an anti-Hermitian part:

dyn

’ dyn " dyn
£jj +i

(79
Both matrices’ ™" and "¢ %" may have complex elements,
but must be Hermitian. In accordance w§itb), we may also
call them the real and imaginary parts gﬁy”. Particularly,
the imaginary part is

modyn_ dyn* _
8ij = Eji n)

which can be also written as

©Omnt i E€miBi (76)

J
- (Sim—5im)< )(Snj—5nj) :

here the fack =gj; is used. From the expressioal) and
(37)—(39) for &, one can show that the equation

wémn+i§6mkan 1 (98”

(gim_5im)< 2 )(gnj nj)
XWp
(77

is valid. So the imaginary pa(76) of the dynamic contribu-
tion to the permittivity is

ndyn_ 1 (9 8']

i T2 dwat” (78

This formula was first obtained if6].

IV. DISCUSSIONS

Because both the dispersion and nonlinearity are ac-
counted for, the hydrodynamic theory of dispersion sketched
in Sec. Il is a fairly complete theory for the dynamics of a
fluid interacting with varying fields. The theory is derived by
generalizing the hydrodynamic approach, but the result is
consistent with the work of Pitaev§kivho starts from rather
different physics.

Though not shown here, the present theory reduces to the
hydrodynamic ong2], in the low frequency limiw—0. It is
also in agreement with the Barash-Karpman's stress tensor
derived for quasimonochromatic field.e., including the
lowest-order effects of temporal variation of the field ampli-
tude &) [9]. All these features support the statement that the
basic equations shown in Sec. Il are correctly formulated,
particularly the fundamental differential relati¢).

In our theory for dispersive media, Pitaeu&kimagneti-
zation appears as a consequence of circular motions of the
polarization. In contrast to the conventional magnetization of
atomic origin, Pitaevskis magnetization is macroscopic.
Because the circular motion &f is usually accompanied by
a rotating electric field, Pitaevdls magnetization is less
suitably generated by linearly polarized electromagnetic
fields, as suggested [6]. It is remarkable that the explana-
tion to this phenomenon was given by the first nonlinear
term in the expansion of the energy, E22). We expect it to
be an important nonlinear effect, and to play a significant
role in the nonlinear interaction between matter and intense
laser lights.
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